An Entropy Formulation Based on the Generalized Liouville Fractional Derivative
نویسندگان
چکیده
منابع مشابه
Space-Time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional Derivative
This paper deals with the investigation of the computational solutions of a unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized Riemann–Liouville fractional derivative defined by others and the space derivative of second order by the Riesz–Feller fractional derivative and adding...
متن کاملFractional Ince equation with a Riemann-Liouville fractional derivative
We extend the classical treatment of the Ince equation to include the effect of a fractional derivative term of order a > 0 and amplitude c. A Fourier expansion is used to determine the eigenvalue curves að Þ in function of the parameter , the stability domains, and the periodic stable solutions of the fractional Ince equation. Two important observations are the detachment of the eigenvalue cur...
متن کاملON GENERALIZED k-FRACTIONAL DERIVATIVE OPERATOR
The main objective of this paper is to introduce k-fractional derivative operator by using the definition of k-beta function. We establish some results related to the newly defined fractional operator such as Mellin transform and relations to khypergeometric and k-Appell’s functions. Also, we investigate the k-fractional derivative of k-Mittag-Leffler and Wright hypergeometric functions.
متن کاملImplicit Fractional Differential Equations via the Liouville–Caputo Derivative
We study an initial value problem for an implicit fractional differential equation with the Liouville–Caputo fractional derivative. By using fixed point theory and an approximation method, we obtain some existence and uniqueness results.
متن کاملSome New Delay Integral Inequalities Based on Modified Riemann-Liouville Fractional Derivative and Their Applications
By using the properties of modified Riemann-Liouville fractional derivative, some new delay integral inequalities have been studied. First, we offered explicit bounds for the unknown functions, then we applied the results to the research concerning the boundness, uniqueness and continuous dependence on the initial for solutions to certain fractional differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2019
ISSN: 1099-4300
DOI: 10.3390/e21070638